第1章

数制与编码

1.1 模拟信号与数字信号

1.1.1 模拟信号与数字信号的概念

Analog

模拟信号

Digital

数字信号

1.1 模拟信号与数字信号

1.1.2 数字电路与模拟电路的区别

表 1-1 数字电路与模拟电路的主要区别

电路类型	数 字 电 路	模 拟 电 路
研究内容	输入信号与输出信号间的逻辑关系	如何不失真地进行信号的处理
信号的特征	数值	数値 时间 対は 本 体 原 口 対 は 本 体 和 体 和 体 和 体 和 体 和 体 和 体 和 体 和 体 和 体
	时间上离散,但在数值上是单位量的整数倍	在时间上和数值上是连续变化的电信号
分析方法	逻辑代数	图解法,等效电路,分析计算

1.1 模拟信号与数字信号

1.1.3 数字电路的特点

- (1) 稳定性好,抗干扰能力强。
- (2)容易设计,便于构成大规模集成电路。
- (3)信息的处理能力强。
- (4)精度高。
- (5)保真度好。
- (6)便于存储。
- (7)便于利用自动化设计技术。
- (8)功耗小。

1.2 数字系统中的数制

1.2.1 十进制数表述方法

$$358.67 = 3 \times 10^{2} + 5 \times 10^{1} + 8 \times 10^{0} + 6 \times 10^{-1} + 7 \times 10^{-2}$$

$$(N)_{10} = a_{n-1}10^{n-1} + \dots + a_110^1 + a_010^0 + a_{-1}10^{-1} + \dots + a_{-m}10^{-m}$$

$$= \sum_{i=-m}^{n-1} a_i \times 10^i$$
(1-1)

1.2 数字系统中的数制

1.2.2 二进制数表述方法

$$(N)_{2} = a_{n-1} 2^{n-1} + \dots + a_{1} 2^{1} + a_{0} 2^{0} + a_{-1} 2^{-1} + \dots + a_{-m} 2^{-m}$$

$$= \sum_{i=1}^{n-1} a_{i} \times 2^{i}$$
(1-2)

$$(11010.101)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

表 1-2 二进制算术运算规则

二进制的加法规则	二进制的减法规则	二进制的乘法规则
0 + 0 = 0	0 - 0 = 0	$0 \times 0 = 0$
1 + 0 = 1	0-1=1(有借位)	1 × 0 = 0
0 + 1 = 1	1 - 0 = 1	0 × 1 = 0
1 + 1 = 10	1 - 1 = 0	1 × 1 = 1

$$\begin{array}{r}
11110 \div 101 = 110, \\
101) 111110 \\
101 \\
101 \\
101 \\
0
\end{array}$$

1.2 数字系统中的数制

1.2.3 十六进制数表述方法

$$(N)_{16} = a_{n-1}(16)^{n-1} + \dots + a_1(16)^1 + a_0(16)^0 + a_{-1}(16)^{-1} + \dots + a_{-m}(16)^{-m}$$

$$= \sum_{i=-m}^{n-1} a_i \times (16)^i$$
(1-3)

$$(7F9)_{16} = 7 \times 16^2 + F \times 16^1 + 9 \times 16^0$$

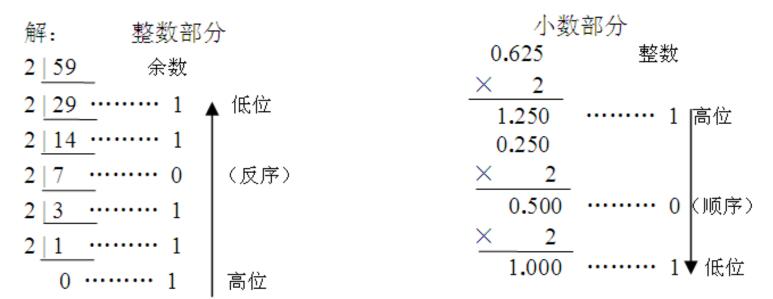
1.2.4 八进制数表述方法

$$(N)_{8} = a_{n-1}8^{n-1} + \dots + a_{1}8^{1} + a_{0}8^{0} + a_{-1}8^{-1} + \dots + a_{-m}8^{-m}$$

$$= \sum_{i=-m}^{n-1} a_{i} \times 8^{i}$$
(1-4)

1.3.1 十六进制、二进制数与十进制数间的转换

【例 1-1】将二进制数(110101.101)2转换为十进制数。


解:
$$(110101.101)_2 = 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

= $32 + 16 + 0 + 4 + 0 + 1 + 0.5 + 0 + 0.125 = (53.625)_D$

【例 1-2】 将十六进制数(4E5.8)_H转换为十进制数。

解:
$$(4E5.8)_{H} = 4 \times (16)^{2} + E \times (16)^{1} + 5 \times (16)^{0} + 8 \times (16)^{-1}$$

= $4 \times 256 + 14 \times 16 + 5 \times 1 + 8 \times (1/16) = (1253.5)_{D}$

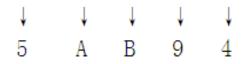
1.3.2 十进制数转换为二进制、十六进制数

【例 1-3】 将(59.625)D 转换为二进制数。

即 (59.625)_D= (111011.101)_B , 也可表示成 111011.101B

1.3.2 十进制数转换为二进制、十六进制数

【例 1-4】 将十进制数 (427.34375)_D 转换成十六进制数。



结果是: (427.34375)_D=(1AB.58)₁₆, 也可表示成 1AB.58H

1.3.3 二进制数与十六进制、八进制数间的转换

【例 1-5】 将二进制数(10110101011.100101)_B转换成十六进制数。

解: 因为 10110101011.100101=0101 1010 1011.1001 0100

所以 (10110101011.100101)_B = (5AB.94)_H

【例 1-6】 将十六进制数 (75E.C6)_H 转换成二进制数。

解:将每位十六进制数写成对应的四位二进制数:

 $(75E.C6)_{H} = (0111\ 0101\ 1110.\ 1100\ 0110)_{B} = (11101011110.\ 1100011)_{B}$

【例 1-7】将八进制数(5163)o转换成二进制数。

解:将每位八进制数码分别用三位二进制数表示,转换过程如下 $(5163)_0 = (101\ 001\ 110\ 011)_2 = (101001110011)_2$

1.4.1 十进制编码

1. 8421 BCD码

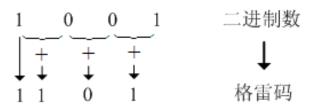
2. 2421码

3. 余3码

表 1-3 三种常用的十进制编码。

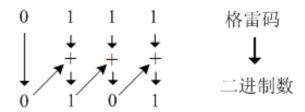
十进制数	8421 码 (BCD 码)	2421 码	余 3 码	
0	0000	0000	0011	
1	0001	0001	0100	
2	0010	0010	0101	
3	0011	0011	0110	
4	0100	0100	0111	
5	0101	1011	1000	
6	0110 1100		1001	
7	0111	1101	1010	
8	1000	1110	1011	
9	1001	1111	1100	
10		0101	0000	
11		0110	0001	
12	不用的代码	0111	0010	
13		1000	1101	
14		1001	1110	
15		1010	1111	

1.4.2 格雷码


表 1-4 4 位格雷码与二进制码对照	
- 77 T - 4 4 4 4 4 4 4 6 8 4 5 - 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	尹

十进制数	二进制码	格雷码	十进制数	二进制码	格雷码
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

1.4.2 格雷码


【例 1-8】 把二进制数 1001 转换成格雷码。

解: 把二进制数 1001 转换成格雷码的方法如下, 转换后的格雷码是 1101:

【例 1-9】 把格雷码 0111 转换成二进制数。

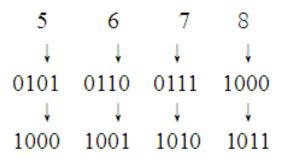
解: 把格雷码 0111 转换成二进制数的方法如下, 转换后的二进制数是 0101:

1.4.3 十进制数的BCD码表示方法

【例 1-10】 求出十进制数 972.65₁₀ 的 8421 BCD 码。

解: 将十进制数的每一位转换为其相应的 4 位 BCD 码。

那么十进制数 972.65 就等于:


8421 BCD 码: <u>1001 0111 0010.0110 0101_{8421BCD}</u>, 即:

 $972.65_{10} = 100101110010.01100101_{8421BCD}$

1.4.3 十进制数的BCD码表示方法

【例 1-11】 用余 3 码对十进制数 $N = 5678_{10}$ 进行编码。

解: 先对十进制数进行 8421BCD 编码, 再将各位编码加 3 即可得到余 3 码。

所以有: $N=5678_{10}=10001001101010111_{*3}$

1.4.4 字母数字码

【例 1-12】 一组信息的 ASCII 码如下,根据表 1-5,回答这些信息是什么? 1001000 1000101 1001100 1010000

解: 把每组 7 位码转换为等值的十六进制数,则有: 48 45 4C 50 以此十六进制数为依据, 查表 1-5 可确定其所表示的符号为: HELP

表 1-5 美国信息交换标准码(ASCII 码)表

位 765 位 4321	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	*	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	50	2	В	R	ъ	r
0011	ETX	DC3	#	3	С	S	С	S
0100	EOT	DC4	\$	4	D	Т	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	2	7	G	W	g	w
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	i	У
1010	LF	SUB	58¢	-	J	Z	j	z
1011	VT	ESC	+	- 2	K	[k	{
1100	FF	FS	2	<	L]	1	
1101	CR	GS	-	=	M	\	m	}
1110	SO	RS	-	>	N	۸	n	
1111	SI	US	/	?	0	_	0	DEL

1.4.5 码制

小数 +53.625 和-53.625 的原码可分别写成:

$$[X]_{\text{原码}} = \begin{cases} X & \qquad \qquad \text{当} \quad 0 \leq X < 2^n \quad \text{时} \\ 2^n - X & \qquad \text{当} \quad -2^n < X \leq 0 \quad \text{时} \end{cases}$$

1.4.5 码制

2. 反码表示法

【例 1-13】用四位二进制数表示十进制数+5 和-5 的反码。

解: 可以先求十进制数所对应二进制数的原码,再将原码转换成反码。

即 [+5]点 = 0101 , [-5]点 = 1010。

1.4.5 码制

3. 补码表示法

(1) 整数补码的定义是:

$$[X]_{\text{+ 高}} = \begin{cases} X & \qquad \qquad \text{当} \quad 0 \leq X < 2^n \quad \text{时} \\ 2^{n+1} + X & \qquad \text{当} \quad -2^n < X \leq 0 \quad \text{时} \end{cases}$$

【例 1-14】用四位二进制数表示+5 和-5 的补码。

解: 先求十进制数所对应二进制数的原码,再将原码转换成反码,然后将反码变为补码。

即 [+5] 本=0101 , [-5] 本= 1011。

1.4.5 码制

3. 补码表示法

表 1-6 四位	表 1-6 四位有符号数的表示									
b ₃ b ₂ b ₁ b ₀	原码	反码	补码	b ₃ b ₂ b ₁ b ₀	原码	反码	补码			
0111	+7	+7	+7	1000	-0	-7	-8			
0110	+6	+6	+6	1001	-1	-6	-7			
0101	+5	+5	+5	1010	-2	-5	-6			
0100	+4	+4	+4	1011	-3	-4	-5			
0011	+3	+3	+3	1100	-4	-3	-4			
0010	+2	+2	+2	1101	-5	-2	-3			
0001	+1	+1	+1	1110	-6	-1	-2			
0000	+0	+0	+0	1111	-7	-0	-1			

1.4.5 码制

3. 补码表示法

【例 1-15】求二进制数 x = +1011,y = −1011 在八位存贮器中的原码、反码和补码的表示形式。

解:无论是原码、反码和补码形式,八位存贮器的最高位为符号位,其它位则是数值部分的编码表示。在数值部分中,对于正数,原码、反码和补码按位相同,而对于负数,反码是原码的按位求反,补码则是原码的按位求反加 1。所以,二进制数 x 和 y 的原码、反码和补码分别表示如下:

```
[x]_{\text{原6}} = 00001011, [x]_{\text{長6}} = 00001011, [x]_{\text{朴6}} = 00001011
[y]_{\text{原6}} = 10001011, [y]_{\text{長6}} = 11110100, [y]_{\text{朴6}} = 11110101
```

【例 1-16】求 X=-1001010 的补码。

解: [x]*+=2*+(-1001010) = 10000 0000-1001010 = 1011 0110。

1.4.5 码制

3. 补码表示法

(2) 定点小数 (二进制小数) 补码的定义是:

$$[X]_{\dagger h} = \begin{cases} X & \qquad \qquad \text{当} \quad 0 \leq X < 1 \quad \text{时} \\ 2 + X & \qquad \text{当} \quad -1 < X \leq 0 \quad \text{时} \end{cases}$$

【例 1-17】 求 $X_1 = +0.101$ 1011 和 $X_2 = -0.101$ 1011 的补码。

解:
$$[X_1]$$
 = 0.101 1011 $[X_2]$ = 2+(-0.101 1011) = 10 - 0.101 1011 = 1.010 0101

- 1.4.6 用补码进行二进制数运算
 - 1. 原码运算
 - 2. 补码运算

$$[X+Y]_{\uparrow h} = [X]_{\uparrow h} + [Y]_{\uparrow h}; \qquad [X-Y]_{\uparrow h} = [X]_{\uparrow h} + [-Y]_{\uparrow h}$$

3. 反码运算

$$[X+Y]_{5}=[X]_{5}+[Y]_{5}; \quad [X-Y]_{5}=[X]_{5}+[-Y]_{5}$$

1.4.6 用补码进行二进制数运算

【例 1-18】设 X=+101 1101, Y=+001 1010, 求 Z=X-Y。

解: (1) 原码运算。

[X]_E=0101 1101 , [Y]_E=0001 1010

因为|X|>|Y|,所以 X 作被减数,Y 作减数,差值为正。

	0	1	0	1	1	1	0	1
_	0	0	0	1	1	0	1	0
=	0	1	0	0	0	0	1	1

即[Z]原=0100 0011, 其真值为 Z=+100 0011。

1.4.6 用补码进行二进制数运算

(2) 反码运算。

[X]_E=0101 1101 , [-Y]_E=1110 0101

运算中,符号位产生了进位,因此需将此进位加到和的最低位。 从运算过程可见,反码加法运算后,须判断是否需要作循环进 位运算,而循环进位运算又相当于一次加法运算,因此会影响 运算器的运算速度。

	0	1	0	1	1	1	0	1
+	1	1	1	0	0	1	0	1
(1)	0	1	0	0	0	0	1	0
+ -	-							1
=	0	1	0	0	0	0	1	1

即[Z]辰=0100 0011, 其真值为 Z=+100 0011。

1.4.6 用补码进行二进制数运算

(3)补码运算。

	0	1	0	1	1	1	0	1
+	1	1	1	0	0	1	1	0
(1)	0	1	0	0	0	0	1	1
舍弃┫┛								

即 [Z]*= 0100 0011, 其真值为 Z= +100 0011。

1.4.6 用补码进行二进制数运算

【例 1-19】用 4 位二进制数的补码形式运算 7-5 和 4-6。

解:
$$7 - 5 = 7 + (-5) = [7]_{\text{+}} + [-5]_{\text{+}} = 0111 + 1011 = 0010 (丢弃进位) = 2$$

 $4 - 6 = [4]_{\text{+}} + [-6]_{\text{+}} = [0100]_{\text{+}} + [1110]_{\text{+}} = 0100 + 1010 = [1110]_{\text{+}} = [1010]_{\text{原育}} = -2$