第3章

逻辑函数运算规则及化简

3.1 概 述

$$F=f(A, B, C, \cdots)$$

3.2.1 逻辑代数基本公理

公理 1: 设 A 为逻辑变量, 若 A≠0,则 A=1; 若 A≠l,则 A=0。

公理 2: 0.0=0; 1+1=1。

公理 3: $1\cdot 1=1$; 0+0=0。

公理 4: 0.1=0; 1+0=1。 1.0=0; 0+1=1

公理 5: 0=1; 1=0。

3.2.2 逻辑代数的基本定律

- (1) **0-1 4:** $A \cdot 0 = 0$; A + 1 = 1.
- (2) **自等律:** $A \cdot 1 = A$; A + 0 = A。
- (3) **重叠律:** $A \cdot A = A$; A + A = A
- (4) **互补律:** $A \cdot \bar{A} = 0$; $A + \bar{A} = 1$ 。
- (5) **还原律:** $\bar{A} = A$ 。
- (6) 交換律: $A \cdot B = B \cdot A$; A + B = B + A。
- (7) **结合律:** $A \cdot (B \cdot C) = (A \cdot B) \cdot C$; A + (B + C) = (A + B) + C 。

3.2.2 逻辑代数的基本定律

(8) **分配律:**
$$A \cdot (B+C) = AB + AC$$
 ; $A + (B \cdot C) = (A+B) \cdot (A+C)$ 加(逻辑或)对乘(逻辑与)的分配律证明如下: $A + (B \cdot C) = A(1+B+C) + BC$ (利用 $0 - 1$ 律和自等律) $= A + AB + AC + BC$ (利用乘对加的分配律) $= AA + AB + AC + BC$ (利用重叠律) $= A(A+B) + C(A+B)$ (利用乘对加的分配律) $= (A+B)(A+C)$ (利用乘对加的分配律)

(9) 吸收律:
$$A + A \cdot B = A$$
; $A \cdot (A + B) = A$
证明: $A + A \cdot B = A(1 + B) = A \cdot 1 = A$
 $A \cdot (A + B) = AA + AB = A + AB = A(1 + B) = A$

(10) 等同律:
$$A + \overline{AB} = A + B$$
; $A \cdot (\overline{A} + B) = AB$
证明: $A + \overline{AB} = A(1 + B) + \overline{AB} = A + AB + \overline{AB} = A + B(A + \overline{A}) = A + B$

3.2.2 逻辑代数的基本定律

(11) **反演律** (摩根定理): $\overline{A \cdot B} = \overline{A} + \overline{B}$; $\overline{A + B} = \overline{A} \cdot \overline{B}$

以下真值表表 3-1 的证明可见反演律成立。

表 3-1 真值表

A	В	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$	$\overline{A+B}$	$\overline{A} \cdot \overline{B}$
0	0	1	1	1	1
0	1	1	1	0	0
1	0	1	1	0	0
1	1	0	0	0	0

(12) 包含律:
$$AB + \overline{AC} + BCD = AB + \overline{AC}$$

证明: $AB + \overline{AC} + BCD = AB + \overline{AC} + BCD(A + \overline{A})$
 $= AB + \overline{AC} + ABCD + \overline{ABCD}$
 $= (AB + ABCD) + (\overline{AC} + \overline{ABCD})$
 $= AB(1 + CD) + \overline{AC}(1 + BD) = AB + \overline{AC}$

3.2.3 摩根定理

$$\overline{AB} = \overline{A} + \overline{B}$$

$$\overline{A} + \overline{B} = \overline{A}\overline{B}$$

$$\overline{ABC} = \overline{A} + \overline{B} + \overline{C} ; \quad \overline{A + B + C} = \overline{A}\overline{B}\overline{C}$$

【例 3-1】 应用摩根定理化简逻辑函数 $F = \overline{(AB + \overline{C})(A + \overline{B}C)}$

解: 反复应用摩根定理可得:

$$F = \overline{AB} + \overline{C} + \overline{A} + \overline{BC} = \overline{ABC} + \overline{A}\overline{BC}$$
$$= (\overline{A} + \overline{B})C + \overline{A}(B + \overline{C}) = \overline{AC} + \overline{BC} + \overline{AB} + \overline{AC} = \overline{A} + \overline{BC}$$

3.2.4 逻辑代数的基本规则

1. 代入规则

$$A(B+C)=AB+AC$$
 $A(B+(C+D))=AB+A(C+D)$

2. 反演规则

【例 3-2】 已知逻辑函数
$$F = \overline{A} + \overline{B}(C + \overline{D}E)$$
, 试求其反函数。解: $\overline{F} = A(B + \overline{C}(D + \overline{E}))$,而不应该是 $\overline{F} = AB + \overline{C}D + \overline{E}$

【例 3-3 】 已知
$$F = A + \overline{B + \overline{C} \cdot \overline{D} + \overline{E}}$$
 , 求 \overline{F} 。

解法一:
$$F = A + \overline{B + \overline{C} \cdot \overline{D} + \overline{E}} = A + \overline{B + \overline{C} \cdot \overline{D} E}$$

$$\overline{F} = \overline{A}(B + \overline{C} \cdot \overline{D} E) = \overline{A}B + \overline{A} \overline{C} \overline{D} E$$
解法二:
$$\overline{F} = A + \overline{B + \overline{C} \cdot \overline{D} + \overline{E}} = \overline{A} \cdot \overline{B}(C + D + \overline{E}) = \overline{A}(B + \overline{C} + D + \overline{E})$$

$$= \overline{A}(B + \overline{C} \cdot \overline{D} E) = \overline{A}B + \overline{A} \overline{C} \overline{D} E$$

- 3.2.4 逻辑代数的基本规则
 - 3. 对偶规则

【例 3-4】 已知
$$F = AB + \overline{C}D$$
,求 F^* 。解: $F^* = (A+B)(\overline{C}+D)$

【例 3-5】 已知
$$F = A + \overline{B + \overline{C} \cdot \overline{D + \overline{E}}}$$
 , 求 F^* 。
解: $F = A + \overline{B + \overline{C} \cdot \overline{D + \overline{E}}} = A + \overline{B + \overline{C} \overline{D} E}$ $F^* = A \cdot \overline{B(\overline{C} + \overline{D} + E)} = A\overline{B} + ACD\overline{E}$

3.2.4 逻辑代数的基本规则

3. 对偶规则

性质 1: 若 $F(A, B, C, \cdots) = G(A, B, C, \cdots)$,则 $F^* = G^*$

性质 2: (F*) *= F

【例 3-6】 证明函数 $F = (A + \bar{C})\bar{B} + A(\bar{B} + \bar{C})$ 是一自对偶函数。 证明: $F^* = (A\bar{C} + \bar{B})(A + \bar{B}\bar{C}) = (A + \bar{B})(\bar{C} + \bar{B})(A + \bar{B})(A + \bar{C})$ $= (A + \bar{B})(\bar{B} + \bar{C})(A + \bar{C}) = A(\bar{B} + \bar{C})(A + \bar{C}) + \bar{B}(\bar{B} + \bar{C})(A + \bar{C})$ $= (\bar{B} + \bar{C})(A + A\bar{C}) + (\bar{B} + \bar{B}\bar{C})(A + \bar{C})$ $= A(\bar{B} + \bar{C}) + \bar{B}(A + \bar{C}) = F$

3.3 逻辑函数表述方法

3.3.1 逻辑代数表达式

$$F(A,B,C,D) = A\overline{B}\overline{C} + \overline{A}BC + A\overline{B}\overline{D} + \overline{A}B\overline{C}D$$

3.3.2 逻辑图表述

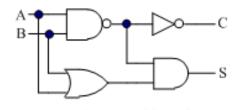


图 3-1 例 3-7 的逻辑图

【例 3-7】 分析图 3-1 逻辑图的逻辑功能。

解: 由图可知:

$$S(A,B) = (A+B)\overline{AB}$$
, $C(A,B) = \overline{\overline{AB}} = AB$

3.3 逻辑函数表述方法

3.3.3 真值表表述

【例 3-8】列出函数 Y=AB+BC+CA 的真值表。解: Y=AB+BC+CA 的真值表如表 3-2 所示。

表 3-	表 3-2 例 3-8 的真值表								
A	В	С	Y						
0	0	0	0						
0	0	1	0						
0	1	0	0						
0	1	1	1						
1	0	0	0						
1	0	1	1						
1	1	0	1						

3.3 逻辑函数表述方法

3.3.4 卡诺图表述方式

AB	0	1
00	m_{0}	m_1
01	m_2	m 3
11	m_6	m_7
10	m_4	m_5

(a) 3 变量卡诺图 (b) 4 变量卡诺图

AB	00	01	11	10
00	m_0	m_1	m_3	m_2
01	m_4	m_5	m_7	m_6
11	m_{12}	m ₁₃	m ₁₅	m_{14}
10	m ₈	m_9	m_{11}	m ₁₀

CL	000	001	011	010	110	111	101	100
$\frac{AB}{00}$	m,	m_1	m,	m_{\circ}	m _e	m_{τ}	m _s	m_4
								m ₁₂
								m ₂₈
10	m_{16}	m_{17}	m_{19}	m ₁₈	m ₂₂	m ₂₃	m_{21}	m ₂₀

(c) 5 变量卡诺图

图 3-2 3、4、5 变量的卡诺图

- 3.4.1 最小项表述方式
 - 1. 最小项的定义

$$\overline{A}\overline{B}\overline{C}\overline{D}$$
 $\overline{A}\overline{B}\overline{C}D$ $\overline{A}\overline{B}C\overline{D}$ $\overline{A}\overline{B}C\overline{D}$ $\overline{A}BCD$ $\overline{A}BCD$

2. 最小项的性质

$$\sum m_i = 1$$

$$A\overline{B}CD \stackrel{L}{=} ABCD$$

3.4.2 最大项表述方式

1. 最大项的定义

$$A+B+C+D$$
, $A+B+C+\overline{D}$, $A+B+\overline{C}+D$, ..., $\overline{A}+\overline{B}+\overline{C}+\overline{D}$

$$A+B+C+D=M_0$$

$$A+B+C+\bar{D}=M_1$$

$$A+B+\bar{C}+D=M_2$$
.....
$$\bar{A}+\bar{B}+\bar{C}+\bar{D}=M_{15}$$

- 3.4.2 最大项表述方式
 - 2. 最大项的性质

$$M_4 + M_6 = (A + \overline{B} + C + D) + (A + \overline{B} + \overline{C} + D) = A + \overline{B} + 1 + D = 1$$

 $A + B + C + D = A + B + C + \overline{D}$ 是相邻最大项。

3. 最小项与最大项的关系

$$m_i = \overline{M}_i$$

$$\overline{ABC} = \overline{A} + \overline{B} + \overline{C} \;,\;\; : \;\; \overline{m}_{\gamma} = M_{\gamma}$$

3.4.3 标准与或表达式

【例 3-9】将
$$F = ABC + \overline{A}B\overline{D}$$
 展开为最小项之和的形式。
解: $F = ABC + \overline{A}B\overline{D} = ABC(D + \overline{D}) + \overline{A}B\overline{D}(C + \overline{C})$
 $= ABCD + ABC\overline{D} + \overline{A}BC\overline{D} + \overline{A}B\overline{C}\overline{D}$
 $= m_{15} + m_{14} + m_6 + m_4 = \sum m(4,6,14,15)$

【例 3-10】将
$$F = AB + \overline{A}BC$$
 写成标准与或表达式。
解: $F = AB + \overline{A}BC = AB(C + \overline{C}) + \overline{A}BC$
 $= ABC + AB\overline{C} + \overline{A}BC = \sum m(3,6,7)$

3.4.4 标准或与表达式

$$A \cdot \overline{A} = 0$$
, $A + BC = (A + B)(A + C)$

【例 3-11】将 $F = \overline{A}B\overline{C} + AB\overline{C} + \overline{A}BC + \overline{A}B\overline{C} = \sum m(0, 2, 3, 6)$ 展开为最大项之积的形式。

解:
$$F = \overline{\overline{A}B\overline{C} + AB\overline{C} + \overline{A}BC + \overline{A}\overline{B}\overline{C}} = \overline{\sum} m(1,4,5,7)$$

 $= \overline{\overline{A}BC + AB\overline{C} + ABC + ABC} = \overline{\overline{A}BC \bullet AB\overline{C}} \bullet \overline{ABC} \bullet \overline{ABC} \bullet \overline{ABC}$
 $= (A + B + \overline{C})(\overline{A} + B + C)(\overline{A} + B + \overline{C})(\overline{A} + \overline{B} + \overline{C}) = \prod M(1,4,5,7)$

【例 3-12】 将
$$F = (A + \overline{B})(A + B + C)$$
 写成标准或与表达式。
解: $F = (A + \overline{B})(A + B + C) = (A + \overline{B} + C\overline{C})(A + B + C)$
 $= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(A + B + C) = \prod M(0, 2, 3)$

3.4.5 两种标准形式的相互转换

$$2^n - K$$

【例 3-13】将标准与或表达式 $F(A,B,C)=\sum m(0,3,5,6)$ 表示为标准或与表达式。解: $F(A,B,C)=\sum m(0,3,5,6)=\prod M(1,2,4,7)$

- 3.4.6 逻辑函数表达式与真值表的相互转换
 - 1. 由真值表求对应的逻辑函数表达式

表 3-3 真值表

A	В	C	F	最小项	最大项
0	0	0	0	m_0	M_0
0	0	1	1	m_1	M_1
0	1	0	1	m_2	M_2
0	1	1	1	m_3	M_3
1	0	0	0	m_4	M_4
1	0	1	1	m_5	M_5
1	1	0	0	m_6	M_6
1	1	1	0	m_7	M_7

$$F = m_1 + m_2 + m_3 + m_5 = \sum m(1, 2, 3, 5)$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + A\overline{BC} = M_0 \cdot M_4 \cdot M_6 \cdot M_7 = \prod M(0, 4, 6, 7)$$

$$= (A + B + C)(\overline{A} + B + C)(\overline{A} + \overline{B} + C)(\overline{A} + \overline{B} + \overline{C})$$

- 3.4.6 逻辑函数表达式与真值表的相互转换
 - 2. 由逻辑函数表达式求对应的真值表

逻辑函数
$$F = AB + \overline{A}BC = ABC + AB\overline{C} + \overline{A}BC$$

 $ABC: 111; AB\overline{C}: 110; \overline{A}BC:011$

3.5.1 并项化简法

$$A + \overline{A} = 1$$

【例 3-14】 化简
$$F = A\overline{B}\overline{C} + A\overline{B}C$$

解: $F = A\overline{B}\overline{C} + A\overline{B}C = A\overline{B}(C+\overline{C}) = A\overline{B}$

【例 3-15】 化简
$$F = ABC + \overline{A}BC + B\overline{C}$$

解: $F = ABC + \overline{A}BC + B\overline{C} = (A + \overline{A})BC + B\overline{C} = BC + B\overline{C} = B$

【例 3-16】 化简
$$F = A(BC + \overline{B}\overline{C}) + A(B\overline{C} + \overline{B}C)$$

解: $F = A(BC + \overline{B}\overline{C}) + A(B\overline{C} + \overline{B}C) = A(B \odot C) + A(B \oplus C)$
 $= A(B \odot C) + A(\overline{B} \odot C) = A$

3.5.2 吸收化简法

$$A + AB = A$$
 $A + \overline{AB} = A + B$

【例 3-17】化简
$$F = \overline{AB} + \overline{ABCD}(\overline{E} + F)$$

解:
$$F = \overline{A}B + \overline{A}BCD(\overline{E} + F) = \overline{A}B$$

【例 3-18】化简
$$F = A\overline{B} + C + \overline{A}\overline{C}D + B\overline{C}D$$

解: $F = A\overline{B} + C + \overline{A}\overline{C}D + B\overline{C}D = A\overline{B} + C + \overline{C}(\overline{A} + B)D$
 $= A\overline{B} + C + (\overline{A} + B)D = A\overline{B} + C + \overline{A}\overline{B}D$
 $= A\overline{B} + C + D$

【例 3-19】化简
$$F = A + \overline{\overline{A}\overline{BC}}(\overline{A} + \overline{\overline{B}\overline{C}} + \overline{D}) + BC$$

$$\widetilde{\mathbf{M}}: F = A + \overline{A}\overline{BC}(\overline{A} + \overline{B}\overline{C} + D) + BC = A + BC + (A + BC)(\overline{A} + \overline{B}\overline{C} + D) = A + BC$$

3.5.3 配项化简法

$$A + \overline{A} = 1$$

$$A + A = A$$

【例 3-20】 化筒
$$F = AB + \overline{A}\overline{C} + \overline{B}\overline{C}$$

解: $F = AB + \overline{A}\overline{C} + \overline{B}\overline{C} = AB + \overline{A}\overline{C} + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C}$
 $= AB + \overline{A}\overline{C} + A\overline{B}\overline{C} = AB + \overline{C}(\overline{A} + A\overline{B})$
 $= AB + \overline{C}(\overline{A} + \overline{B}) = AB + \overline{C}\overline{AB} = AB + \overline{C}$

【例 3-21】化筒
$$F = \overline{A}\overline{B} + \overline{B}\overline{C} + BC + AB$$

解: $F = \overline{A}\overline{B} + \overline{B}\overline{C} + BC + AB = \overline{A}\overline{B}(C + \overline{C}) + \overline{B}\overline{C} + BC(A + \overline{A}) + AB$
 $= \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + \overline{B}\overline{C} + ABC + \overline{A}BC + AB$
 $= AB + \overline{B}\overline{C} + \overline{A}C(B + \overline{B}) = AB + \overline{B}\overline{C} + \overline{A}C$

【例 3-22】化简
$$F = ABC + AB\overline{C} + A\overline{B}C + \overline{A}BC$$

解: $F = ABC + AB\overline{C} + A\overline{B}C + \overline{A}BC$
 $= (ABC + AB\overline{C}) + (ABC + A\overline{B}C) + (ABC + \overline{A}BC)$
 $= AB + AC + BC$

3.5.4 消去冗余项化简法

$$AB + \overline{A}C + BC = AB + \overline{A}C$$

【例 3-23】化简
$$F = AC + A\overline{B}CD + ABC + \overline{C}D + ABD$$

解: $F = AC + A\overline{B}CD + ABC + \overline{C}D + ABD$
$$= AC(1 + \overline{B}D + B) + \overline{C}D + ABD = AC + \overline{C}D + ABD = AC + \overline{C}D$$

【例 3-24】化简
$$F = AB + \overline{B}C + AC(DE + FG)$$

解: $F = AB + \overline{B}C + AC(DE + FG) = AB + \overline{B}C$

【例 3-25】 化筒
$$F = AD + A\bar{D} + AB + \bar{A}C + BD + \bar{B}E + DE$$

解: $F = AD + A\bar{D} + AB + \bar{A}C + BD + \bar{B}E + DE$
$$= A + AB + \bar{A}C + BD + \bar{B}E + DE$$

$$= A + \bar{A}C + BD + \bar{B}E + DE$$

$$= A + C + BD + \bar{B}E + DE$$

$$= A + C + BD + \bar{B}E$$

3.5.4 消去冗余项化简法

$$AB + \overline{A}C + BC = AB + \overline{A}C$$

【例 3-26】化筒
$$F = AB + A\bar{C} + \bar{B}C + \bar{C}B + \bar{B}D + \bar{D}B + ADE(F+G)$$

解: $F = AB + A\bar{C} + \bar{B}C + \bar{C}B + \bar{B}D + \bar{D}B + ADE(F+G)$
 $= A(B+\bar{C}) + \bar{B}C + \bar{C}B + \bar{B}D + \bar{D}B + ADE(F+G)$
 $= A(\bar{B}C) + \bar{B}C + \bar{C}B + \bar{B}D + \bar{D}B + ADE(F+G)$
 $= A + \bar{B}C + \bar{C}B + \bar{B}D + \bar{D}B + ADE(F+G)$
 $= A + \bar{B}C(D+\bar{D}) + \bar{C}B + \bar{B}D + \bar{D}B(C+\bar{C})$
 $= A + \bar{B}CD + \bar{B}C\bar{D} + \bar{C}B + \bar{B}D + \bar{D}BC + \bar{D}B\bar{C}$
 $= A + \bar{B}D + C\bar{D} + B\bar{C}$

【例 3-27】化简
$$F = (\bar{B} + D)(\bar{B} + D + A + G)(C + E)(\bar{C} + G)(A + E + G)$$
解: (1) 先求出 F 的对偶函数 F^* ,并对其进行化简:
$$F^* = \bar{B}D + \bar{B}DAG + CE + \bar{C}G + AEG = \bar{B}D + CE + \bar{C}G$$

(2) 求 F^* 的对偶函数,便得F的最简或与表达式:

$$F = (\overline{B} + D)(C + E)(\overline{C} + G)$$

3.6.1 与或表达式的卡诺图表示

【例 3-28】用卡诺图表示下面的标准与或表达式:

$$F = \overline{A}BC + ABC + A\overline{B}C$$

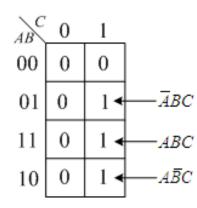


图 3-3 标准与或卡诺图

3.6.1 与或表达式的卡诺图表示

【例 3-29】 用卡诺图表示逻辑函数:

$$F = \overline{A}\overline{B}\overline{C}D + \overline{A}B\overline{D} + ACD + A\overline{B}$$

解: 首先将逻辑函数 F 化为若干个最小项之和的标准形式:

$$F = \overline{A}\overline{B}\overline{C}D + \overline{A}B\overline{D} + ACD + A\overline{B}$$

$$= \overline{A}\overline{B}\overline{C}D + \overline{A}B(C + \overline{C})\overline{D} + A(B + \overline{B})CD + A\overline{B}(C + \overline{C})(D + \overline{D})$$

$$= \overline{A}\overline{B}\overline{C}D + \overline{A}BC\overline{D} + \overline{A}B\overline{C}D + ABCD + A\overline{B}C\overline{D} + A\overline{B}C\overline{D} + A\overline{B}\overline{C}D$$

$$= \sum m(1,5,6,8,9,10,11,15)$$

CL AB	00	01	11	10
00	0	1	0	0
01	0	1	0	1
11	0	0	1	0
10	1	1	1	1

图 3-4 非标准与或表达式卡诺图

3.6.1 与或表达式的卡诺图表示

【例 3-30】用卡诺图表示逻辑函数: $F = \bar{A}\bar{D} + \bar{B}C$

解:在变量 A、D 取值均为 00 的所有方格中填入 1;在变量 B、C 取值分别为 0、1的所有方格中填入 1,其余方格中填入 0,卡诺图如图 3-5 所示。

AB\	00	01	11	10
00	1	0	1	1
01	1	0	0	1
11	0	0	0	0
10	0	0	1	1

图 3-5 非标准与或表达式卡诺图

- 3.6.2 与或表达式的卡诺图化简
 - 1. 卡诺图化简原理

$$m_0$$
 m_1 m_2 m_2 m_2 m_3 m_4 m_5 m_7 m_6 m_1 m_{12} m_{13} m_{15} m_{14} m_8 m_9 m_{11} m_{10}

图 3-6 逻辑相邻最小项的概念

$$AB + A\overline{B} = A$$

- 3.6.2 与或表达式的卡诺图化简
 - 2. 卡诺图化简的步骤

【例 3-31】用卡诺图化简法求出以下逻辑函数的最简与或式:

$$F(A, B, C, D) = \sum m(1, 3, 5, 7, 8, 9, 10, 11, 14, 15)$$

解: 首先画出该逻辑函数的卡诺图 (图 3-7), 然后按照以上步骤进行化简。

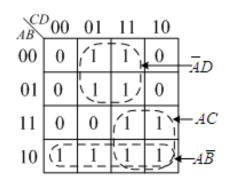


图 3-7 例 3-31 的卡诺图

- 3.6.2 与或表达式的卡诺图化简
 - 2. 卡诺图化简的步骤

【例 3-32】某逻辑电路的输入变量为 $A \times B \times C \times D$,它的真值表如表 3-4 所示,用卡诺图化简法求出逻辑函数 F(A, B, C, D)的最简与或表达式。

A	В	C	D	F	A	В	C	D	F
0	0	0	0	1	1	0	0	0	1
0	0	0	1	0	1	0	0	1	0
0	0	1	0	0	1	0	1	0	1
0	0	1	1	0	1	0	1	1	0
0	1	0	0	1	1	1	0	0	1
0	1	0	1	1	1	1	0	1	0
0	1	1	0	0	1	1	1	0	0
0	1	1	1	0	1	1	1	1	1

表 3-4 例 3-32 的真值表

- 3.6.2 与或表达式的卡诺图化简
 - 2. 卡诺图化简的步骤

解:由以上真值表画出卡诺图,如图 3-8 所示。找出可以合并的最小项,即画"圈",并写出最简与或表达式:

$$F = \overline{C}\overline{D} + A\overline{B}\overline{D} + \overline{A}B\overline{C} + ABCD$$

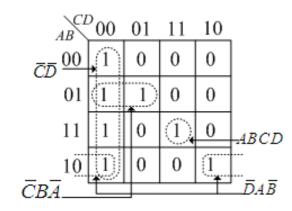


图 3-8 例 3-32 的卡诺图

- 3.6.2 与或表达式的卡诺图化简
 - 2. 卡诺图化简的步骤

【例 3-33】用卡诺图化简法求出以下逻辑函数的最简与或式:

$$F(A, B, C, D) = \sum m(0, 2, 3, 4, 6, 8, 10, 11, 12, 14)$$

解: 画出该逻辑函数的卡诺图(图 3-9)。最简与或式为:

$$F(A,B,C,D) = \overline{B}C + \overline{D}$$

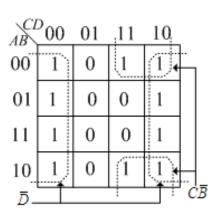


图 3-9 例 3-33 的卡诺图

- 3.6.3 或与表达式的卡诺图化简
 - 1. 或与表达式的卡诺图表示

【例 3-34】用卡诺图表示下面的标准或与表达式:

$$F = (A + B + C)(A + \overline{B} + C)(\overline{A} + \overline{B} + C)(\overline{A} + B + \overline{C})$$

解:根据上式画出卡诺图,如图 3-10 所示。

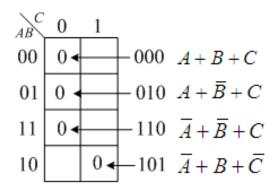


图 3-10 标准或与表达式的卡诺图

- 3.6.3 或与表达式的卡诺图化简
 - 2. 或与表达式的卡诺图化简

【例 3-35】用卡诺图化简下面或与表达式:

$$F = (A + B + C)(A + \overline{B} + C)(\overline{A} + \overline{B} + C)(\overline{A} + B + \overline{C})$$

解:根据上式画出卡诺图,如图 3-11 所示。

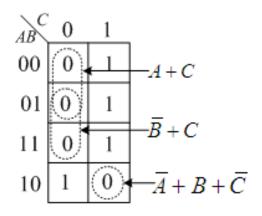


图 3-11 例 3-34 的卡诺图

$$F = (A+C)(\overline{B}+C)(\overline{A}+B+\overline{C})$$

3.6.4 含无关项逻辑函数的化简

【例 3-36】化简下列函数:

$$F(A, B, C, D) = \sum m(0, 3, 4, 7, 11) + d(8, 9, 12, 13, 14, 15)$$

解:上式中对应于最小项 m_0 、 m_3 、 m_4 、 m_7 、 m_{11} 的方格中填入 1,而对应于无关项 m_8 、 m_9 、 m_{12} 、 m_{13} 、 m_{14} 、 m_{15} 的方格中填入×,表示其取值不确定。卡诺图如图 3-12 所示。

AB	00	01	11	10
00		0	$\widehat{1}$	0
01	1	0	1	0
11	Х	Χ	Х	Х
10	(X)	Χ	(j)	0
	$\bar{c}\bar{D}$		CD	

$$F = \bar{C}\bar{D} + CD$$

图 3-12 例 3-36 的卡诺图

3.6.4 含无关项逻辑函数的化简

【例 3-37】化简函数: $F = \overline{B}C\overline{D} + \overline{A}\overline{B}CD + A\overline{B}\overline{D} + \overline{B}\overline{C}\overline{D}$

已知约束条件为: AD + BC = 0

解: 将上述约束条件变换为最小项之和的形式:

$$AD + BC = A(B + \overline{B})(C + \overline{C})D + (A + \overline{A})BC(D + \overline{D})$$

= $ABCD + ABCD + A\overline{B}CD + A\overline{B}CD$
+ $ABCD + ABCD + ABCD = 0$

以上等式的 0 左边的最小项都是无关项,即 d(6,7,9,11,13,14,15) = 0,由此可得到逻辑函数 F 的卡诺图如图 3-13 所示。

CL AB	00;	01	11	:10:
00	1	0	$\sqrt{1}$	1)
01	0	0	Χ	Х
11	0	Х	Х	Х
10	$\widehat{1}$	Χ	X	(1)
	4 + 1			++

$$F = C + \overline{B}\overline{D}$$

3.6.5 多输出逻辑函数的化简

【例 3-38】 化简以下多输出函数:

$$F_1 = \sum m(2,3,6,7,10,11,12,13,14,15) \ , \quad F_2 = \sum m(2,6,10,12,13,14)$$

解:分别作出它们的卡诺图,如图 3-14 所示。观察两个卡诺图,找出两者相同的部分,并化简为: $F_1=C+AB\overline{C}$; $F_2=C\overline{D}+AB\overline{C}$

AB	00	01	11	10
00	0	0	$\sqrt{1}$	1
01	0	0	1	1
11	(1	1)	1	1
10	0	0	1	1/

(a) F₁的卡诺图

AB CI	00	01	11	10
00	0	0	0	$\widehat{1}$
01	0	0	0	1
11	(<u>1</u>	1)	0	1
10	0	0	0	1

(b) F₂的卡诺图

图 3-14 例 3-38 的卡诺图