
Lab
EDA Technology

Operators and Structural
Description Statement

Lab

5.1 Operators of Operation

z Verilog is rich in operation operators. According to the
number of operands that the operator takes, the
operation operators can be divided into the following 3
categories.

z Unary operators: it can take one operand, such as logic
inversion “~”. For example, ~A .

z Binary operators: it can take two operands, such as AND
operation “&”. For example, A&B .

z Ternary operators: it can take three operands, such as
condition operator “?:” (question mark and colon). For
example, s? a:b .

Lab

zassign y= s? a:b;
zs? (question mark)
zThis statement means:
zIf s==1, then y=a;
zElse y=b;

This statement is very important, because it refers to the
continuous assignment statement.

Lab

5.1.1 Bit Logical Operator

zIn addit ion to the log ica l invers ion
operator “~”, the bit logical operator
belongs to the binary operator.
zThe logical operations are performed

separately according to bits.

Lab

Assume: A=1'b0, B=1'b1, C[3:0]=4'b1100, D[3:0]=4'b1011, E[5:0]=6'b010110

Lab

5.1.2 Logical Operator

z The operators of logical operation have the following three types.
z Logic AND: &&.
z Logic OR: ||
z Logic INVERSE: !. For example, !A=0.

z “!” belongs to unary operators, “&&” and “||” both belong to binary
operator.

Lab

z The difference between the logic operation operator and the bit
logical operator in the above is that if the operand corresponding to
the logical operator is a bit vector, then no matter how many bits,
the output after the operation is only 1 bit.

z If A=4’b1001, B=4’b0001, then:
z

z Besides, if a vector contains z in addition to 0, it is considered to be
logical z and has the following relations.

z 1&z = 1'bz, 0&z = 1'b0, 1|z = 1'b1, 0|z = 1'bz

A && B=(1|0|0|1) & (0|0|0|1)=1&1=1’b1

Lab

zA=4’b1001, B=4’b0001
zFirstly, compute 1 | 0 | 0 | 1 =1
zSecond, compute 0 | 0 | 0 | 1 =1
zFinally, 1&1 =1

Lab

5.1.3 Arithmetical Operator

z All arithmetic operations are performed by unsigned operands, and
if they are subtractive operations, the result of output is
complemental code.

Lab[Example]

Figure: The simulation waveform of Example

Lab

5.1.4 Relational Operator

Lab

LabExample

Lab

Figure: The simulation waveform of the Example

Lab

5.1.6 Contraction Operators

z There are six types of contraction operators, including & (AND), -&
(NAND), | (OR), ~| (NOR), ^ (XOR), ^~, ~^ (XNOR). The
contraction operator belongs to the unary operator, and the output
result of its operation is also one bit.

z For example, if A=8’b11101111, then &A=1&1&1&0&1&1&1&1=0;
this is because only when every bit of A is 1, their reduced
operation value of AND is 1.

Lab
5.1.7 Parallel Connection
Operator

z If s1=1’b0, s0=1’b0, then {s1, s0}=2’b00, here the
parenthesis “{}” is the parallel connection operator. “{}”
can splice two or more signals in binary bits and use them
as a data signal.

z {a1, b1, 4{a2,b2}} = { a1, b1, {a2,b2}, {a2,b2}, {a2,b2},
{a2,b2}} = {a1,b1,a2,b2,a2,b2,a2,b2,a2,b2}

Lab

5.1.8 Shift Operator

z “>>” is a rightward shift operator, “<<” is a leftward shift operator, and
their general formats are given as follows:

z V >> n or V << n

z The data in the operands or variables V is shifted to the right or left by n
bits.

z For example, if V=8’b11001001, then:
z the value of V>>1 is 8’b01100100
z the value of V<<3 is 8’b01001000

Lab

z “>>>” is as the right shift operator, “<<<” is as the left shift
operator. Their general form are given as follows:

z V >>> n or V <<< n

z The above expressions mean that the data (signed number) in the operand
or variable V is shifted to the right or left by n bits. And for the right shift
operation, the symbol bit, that is, the highest position, is filled with the
removed bits, and the left shift operation is the same with the ordinary left
shift operator “<<”.

Lab

Lab
5.1.9 Example of Shift
Operator

Figure: The timing simulation of 4-bit multiplier

Lab

zShifter

Lab

5.1.10 Conditional Operator

z The general format of the conditional operator usage is given as
follows:

z conditional expression ? expression 1: expression 2

Lab
5.2 Continual Assignment
Statement

z assign target variable name = drive expression;

z When any signal variable in the driving expression on the right side of the
equal sign changes, the expression is calculated once and the obtained
data is immediately assigned to the target variable marked by the variable
name on the left side of the equal sign.

z assign [delay] target variable name = drive expression;
z 'timescale 10ns/100ps;
z assign #6 R1 = A & B;

z #:number sign

Lab

wire Y= (S1? AT: BT); is equal to
wire Y; assign Y= S1? AT: BT

Figure: The RTL diagram of the Example

Lab

5.3 Instantiation Statement

5.3.1 Half-adder Design

Lab

5.3.2 Full-adder Design

Lab
5.3.3 Verilog Instantiation
Statement and Its Usage

z the general format of the commonly used port name correlation
method is as follows:

z < module component name > <instantiated component name > (.instantiation
component port (instantiation element external port name),...);

z h_adder U2(.A(net1), .SO(sum), .B(cin),.CO(net3));

z h_adder U2(.B(cin), .CO(net3), .A(net1), .SO(sum));

1 . P o r t n a m e c o r re l a t i o n m e t h o d o f
instantiation statement

Lab

z There is also a corresponding way of linking expression called
“location correlation method”. The so-called location correlation is
to connect the corresponding ports based on the relevant position.

z The location of signal is very important and cannot be misplaced.

z h_adder (A, B, SO, CO) in Example 5-9 can no longer be changed to module
h_adder (A, B, CO, SO).

2. Instantiation statement location correlation method

Lab
5.4 Application of Parameter
Transmission Statement

Lab

z To achieve this goal, the expression way of parameter in Example
5-3 should be firstly rewritten. That is to say, the top two
statements in the example module MULT4B (R, A, B) and
parameter S=4 are only needed to be rewritten into the following
forms:

z module MULT4B #(parameter S=4)(R,A,B);
z or: module MULT4B #(parameter S)(R,A,B);

z #number sign

Lab

Bottom design Top layer design

Lab

z For example, if the module statements and parameters of the
original underlying file are expressed as:

z module SUB_E
z #(parameter S1=4, parameter S2=5, parameter S3=2)(A,B,C);
z then in the instantiation statement, a similar statement should be

made as follows:
z SUB_E #(.S1(8), .S2(9), .S3(7)) U1(.C(CP), .A(AP), .B(BP));

z In Verilog, there is also a parameter transmission statement similar
to parameter function, that is, defparam. Its detailed usage will be
introduced in Chapter 6 through examples.

Lab
5.5 Structural Description
with Library Component
z Gate level components can be divided into 3 categories: multiple

input gates, multiple output gates, and three-state gates. There are
12 most commonly used gates, and their functions and keywords
include:

z (1) There are 6 multiple input gates: AND gate and, NAND gate
nand, OR gate or, NOR gate nor, XOR gate xor, XNOR gate xnor.

z (2) There are 2 multiple output gates: buffer gate buf, NOT gate
not.

z (3) There are 4 three-states gates: three-state gate with high level
enabling bufif1, three-state gate with low level enabling bufif0,
three-state non-gate with low level enabling notif0, three-state non-
gate with high level enabling notif1.

Lab

z The format of invoking gate element is:
z Component name of basic gate <gate instantiation name> (<Port correlation list >)

Figure: The logic circuit described in Example 5-13

Lab

z The instantiation statements of 3-input AND gate and 2-input AND gate are as follows:
z and U1 (out,in1,in2,in3); //3-input AND gate, and the instantiation name is U1
z and U2 (out,in1,in2); //2-input AND gate, and the instantiation name is U2
z For the three-state gate, the input/output ports are listed in the following order, for example:
z bufif1 U1(out,in,enable); //three-state gate with high level enabling
z bufif2 U2(out,a,ctr1); //three-state gate with low level enabling
z As for the invoking of two components buf and not, it should be noted that they allow

multiple outputs, but only one input, for example:
z not IC1 (out1,out2,in); //1 input in, 2 output out1,out2
z buf IC2 (out1,out2, out3,in); //1 input in, 3 output out1,out2, out3

z

Lab
5.6 Compiling Directive
Statement
z In the expression way of program, the compiling directive

statements and the macro names that have been defined begin
with the symbol “’”.

z Verilog provides multiple compiling directive statements, such as
macro definition statement 'define, conditional compilation
statement 'ifdef, 'else, 'endif, 'restall, etc.

z The most commonly used statements are 'define, 'include, 'ifdef,
'else and 'endif.

z ’: apostrophe

Lab
5.6.1 Macro Definition
Statement
z The general usage format of 'define statement is:
z 'define macro name (identifier) macro content (string)

z 'define s A+B+C+D
z “assign DOUT='s + E” is equivalent to the statement “assign

DOUT = A+B+C+D+E;”.

Lab

z The specific application of 'define should also be noted
that:

z (1) A semicolon is not added to the macro definition
statement at the end of the line.

z (2) When a defined macro name is quoted in a program,
the symbol “'” must be added to the identifier that
defines the macro name to show that the identifier is a
macro definition name.

Lab
5.6.2 File Inclusive
Statement, 'include

z The function of the file inclusive statement 'include is to
include all of a file in another file, and its format is:

z 'include "file name"

z "": double quotation marks

Lab

Lab

z When using a file inclusive statements, it should be noted that:
z (1) a 'include statement can only specify a contained file, giving full

name and suffix in the statement.
z (2) The 'include statement can appear anywhere in the program.
z (3) If the included file is not in the folder where the current project

is located, it must indicate the path of the file. For example, 'include
"e:/ADDER/h_adder.v".

z (4) The file inclusion of the 'include statement allows multilevel
inclusions. For example, file 1 contains file 2, file 2 contains file 3,
etc.

z (5) Di f ferent compi lers and synthes izers have d i f ferent
requirements on 'include statements, so they need to be treated
differently.

Lab
5.6.3 Conditional Compilation
Statement, 'ifdef, 'else, 'endif

zThe funct ion of cond i t iona l compi la t ion
command statement 'ifdef, 'else and 'endif is to
direct synthesizer to make the part specified in
the statement participate in the Verilog source
program and be compiled and synthesized
simultaneously.

Lab

Format 1: If the macro
name is def ined in the
program, the statement
block is executed.

Format 2: If the macro
name is def ined in the
program, the statement
b l o c k 1 i s e x e c u t e d ,
otherwise statement block2
is executed.

Lab

Lab
5.7 Application of Attribute
of Keep
z Sometimes the designer hopes that, without increasing the signal

connection that is not related to the design, the signal changes in a
data channel defined within the module can also be understood in
detail in the simulation, such as the signal net3 in Example 5-10.

z However, because this signal is a temporary signal or data channel
inside the module, it is simplified and removed after the logic
synthesis and optimization, so the signal cannot be found in the
simulation signal, and cannot be observed in the simulation
waveform.

z The keep attribute can be used to solve this problem.

Lab

z (* synthesis, keep *) or (* synthesis, probe_port, keep *)

Lab

Figure: The addition of the simulation testing signal net3

Figure: The simulation waveform of Example 5-17

Lab

z (* synthesis, probe_port, keep *) wire net3;
z For vector signals, such as A[7:0], it can be defined as

follows:
z (* synthesis, probe_port, keep *) reg [7:0] A ;

Lab

5.8 Usage of SingalProbe

z In the process of hardware testing for FPGA development projects,
in order to understand one or some of the signals within a design,
the usual way is to add some external elicited ports, and to bring
these internal signals to the outside for testing. These pin settings
are deleted after the end of the test.

z However, the disadvantage of this approach is that the layout of
the original design has been changed when leading the pin only to
use for testing, and the system function after the deletion of these
pins may not be able to return to the original functional structure.

z For this purpose, the SignalProbe signal detection function of
Quartus II can be used to extract the internal signals needed by
users from the FPGA, using the idle connections and ports in the
FPGA without changing the original design layout.

Lab

z This function is different from the use of the keep attribute. Using
the keep attribute simply tells the synthesizer not to optimize a
signal, so that it can be invoked to observe in the simulation file.
The use of SignalProbe detection function is to transmit the
specified internal signals which does not belong to the port to the
external of the device for testing. Of course, sometimes it must be
combined with the application of keep attribute, so that SignalProbe
can measure some internal signals that may be optimized on the
device port.

Lab

z1. Completing the design simulation
and hardware test according to the
routine process
z2. Setting up SignalProbe Pins
z3. Compiling SignalProbe Pins test

information, downloading and
testing

Lab

Figure: Setting the probe signal net3 in the
SignalProbe dialog box

Figure: The settings of SignalProbe Pins dialog box

