
EDA Technology

Chapter 6 The Usage of
LPM Macro Module

Lab
IP

zIntel PSG
yMegaCore
yLPM

Lab

zThe macro modules and LPM functions of Quartus
II include：
yArithmetic component: adder, multiplier, accumulator,

etc.
yCombinational circuit: multiplexer, comparer, LPM gate

function, etc.
yI/O component: PLL, etc.
yMemory: FIFO、RAM、ROM, etc.
yIP of single-chip computer, etc.

Lab
The Example of Invoking
Macro Module of Counter

zThis section gives the general usage
methods of MegaWizard Plug-In Manager
for the same type of macro modules by
introducing the process of invoking and
testing the LPM counter LPM_COUNTER.

Lab
The Invoking of the Text Code of
the Counter LPM Module

Figure: Customizing new macro function block Figure: Setting the LPM macro function block

Set up the project folder，for example, d:\LPM_MD, and choose
Tools->MegaWizard Plug-In Manager。

Open the MegaWizard Plug-In Manager

Lab

Figure: The setting of 4-bit counter with addition and subtraction

Choose 4-bit counter and
choose“Create an updown input…”，which makes the counter have the control
functionality of add/subtract.

Lab

Figure: Setting the counter with the clock enable and carry output

Plain binary: common binary counter
Modulus…: counter with the modulus of …
Clock Enable: clock enable control
Carry-out: carry-out

Lab

Figure: Adding 4-bit parallel data preset functions

Choose synchronous load
and asynchronous clear

The above-mentioned processes generate the Verilog file of the LPM counter,
named “CNT4B.v”, which can be invoked by the higher level Verilog program as
the counter component.

Lab
6.1.2 Application of LPM Counter Code
and Parameter Transmission Statement

z [Example]
z module CNT4B (aclr, clk_en, clock, data, sload, updown, cout, q);
z input aclr, clk_en; //asynchronous clear,1 clear; clock enable, 1 enable, 0 disable
z input clock, sload; //clock input; synchronous preset load control, 1 load, 0 count
z input [3:0] data; input updown; //4-bit preset number, and addition and subtraction control, 1 addition, 0 subtraction
z output cout; output [3:0] q; //carry output and 4-bit count output
z wire sub_wire0; wire [3:0] sub_wire1; // Defining internal connections
z wire cout = sub_wire0; // The same assignment statement as assign
z wire [3:0] q = sub_wire1[3:0]; // The same assignment statement as assign
z lpm_counter lpm_counter_component(// Note that the unused ports in the instantiated statement must be connected to

the specified level.
z .sload(sload), .clk_en(clk_en), .aclr(aclr),
z .data(data), .clock(clock), .updown(updown),
z .cout(sub_wire0), .q(sub_wire1), .aload(1'b0),
z .aset(1'b0), .cin(1'b1), .cnt_en(1'b1),
z .eq(), .sclr(1'b0), .sset(1'b0));
z defparam
z lpm_counter_component.lpm_direction = "UNUSED", // Unused unidirectional counting parameters
z lpm_counter_component.lpm_modulus = 12, //counter with modulus of 12
z lpm_counter_component.lpm_port_updown = "PORT_USED", // Use the addition and subtraction count
z lpm_counter_component.lpm_type = "LPM_COUNTER", // Counter type
z lpm_counter_component.lpm_width = 4; // Counting bit width
z endmodule

Lab

z The general description of the parameter transmission statement defparam
is given as follows:

z defparam < macro module component instantiation name >.
< macro module parameter name > = < parameter value >

Lab

For invoking the counter file “CNT4B.v” , testing and implementing the counter, a
program must be designed to instantiate it. Example of 6-3 is used to realize the
functionality.

Lab
6.1.3 Project Creation and
Simulation Testing

Figure: The simulation waveform of CNT4BIT.v

Lab6.2 Example of Building
Attribute Control Multiplier

The multiplier which uses R2 as the output port is constructed by the macro unit utilizing the way
of pure combinational logic.
The multiplier which uses R1 as the output port is constructed by invoking the embedded
multiplier in FPGA.

For implementing the multiplier, if use conventional method, the synthesized multiplier will
occupy large logic resource and the speed may not be high. The useful method is to invoke the
embedded hardware multiplier in the FPGA and this type of multiplier is commonly used in DSP
technology. Thus, this type of multiplier is called DSP module.

The way of pure combinational logic
The way of invoking FPGA embedded
multiplier

Lab

z wire [15:0] R2 /* synthesis multstyle = "logic" */

z wire [15:0] R2，R1 /* synthesis multstyle = " logic " */

z module andd(A1,B1,A2,B2,R1,R2) /* synthesis multstyle = "dsp" */;

If the multiplier in the overall module is required to be constructed by using DSP
module, the program can be written as follows:

Lab

Figure: The compilation report of completely using logic
macro units to construct the multiplier

Figure: The compilation report of invoking DSP
module

Lab

The compiling report of example 6-4

Lab

If the multiplier in the overall module is required to be constructed by using DSP
module, the program can be written as follows:

Lab

Figure: Selecting DSP Block Balancing as DSP blocks

Lab
6.3 Usage of Macro Block of
LPM_RAM
z In the design and development of involving memory applications

such as RAM and ROM, invoking LPM module-type memory is the
most convenient, most economical, most effective, and most
efficient way to satisfy the design requirements. The following
introduces the related technologies of using Quartus II to invoke
LPM_RAM, including simulation test, generation of initialization
configuration file, instantiation program expression, related
attribute application and Verilog language description of memory.

Lab
6.3.1 Initialization File and
Its Generation
z In the design and development of the RAM and ROM applications,

invoking LPM memory is the most convenient and cost-effective
way for satisfying the design requirements.

z The initialization file of the memory is the data or code that can be
configured in RAM or ROM. In the EDA design, the memory code
file set or designed by the EDA tools is automatically invoked in
the unified compilation.

z Quartus II can accept two types of initialization files：.mif
and .hex.

Lab

z 1．.mif format file
（1）The method of direct editing

File -> New -> Memory Initialization File

Lab

1．.mif format

（2）The method of file editing

Regular editor can be used to design
MIF file. Address and data are both
hexadecimal.
Save as .mif file

The number of data in memory
Width of output data

The data type of address
The data type of memory

Example:

Lab

1．.mif format

（3）specific mif file generator

Figure: Generation of .mif sinusoidal waveform file
by using mif generator

Figure: Open .mif file

Lab

2．.hex format file

（1）method 1：New -> Hexadecimal (Intel-Format) File ->save as .hex format file
（2）method 2：The data is edited in HEX data editing window by using assembly
program editor and .hex format file is generated by using assembly compiler.

3．.dat format file
.mif and .hex format file is related with the specific development software, as the
invoking of them in Verilog text is necessily required to use the stipulated property
expression of Quartus II.
However, the invoking of .dat format data file can be realized directly by using
standard Verilog statements. The data format of .dat file is simplest and its form is
given as follows：

Lab
6.3.2 Invoking LPM_RAM by
Schematic Diagram Method

Figure: Invoking single port LPM RAM

Lab

Figure: Setting RAM parameters

Lab

Figure: Setting RAM to be controlled by input clock
only

Figure: Setting to read the original data at the
same time of writing data：Old Data

Lab

Figure: Setting the initialization file and allowing the in-system editing

Lab

Figure: The well-connected RAM module on a
schematic diagram

Lab
6.3.3 Test LPM_RAM

Figure: The simulation waveform of RAM

Lab6.3.4 Expression of Memory Initialization File
Loading of Verilog Code Description

z In Section 6.3.2, the reader has already seen that invoking the initialization
file from the edited memory can use the editor called by the LPM module to
select the settings in a specific dialog box (as shown in Figure 6-17). But if
you invoke the initialization file in the memory of the Verilog program of
the pure code, you must use a specific instruction statement. Here are two
methods.

z The first method is to use the attribute statement given by Quartus II.
These statements are used only in the Quartus II platform. On the right
side of the memory definition statement of Example 2-3, there are:

z /* synthesis ram_init_file="DATA7X8.mif" */ ;

Lab

z The following definition expression is the Verilog-2001
version and its function is same:

z (* ram_init_file = "DATA7X8.mif" *) reg[7:0]
mem[127:0]

Lab

The second method is to use the Verilog language directly, that is, using
procedural statement initial and system function $readmemh. Because the
standard Verilog statement is used, its expression has general characteristics, so
it is not limited to EDA software environment of Quartus II. As “initial” and
“$readmemh” are used, the format of initialization file must be “.dat”.

In .dat file, the data starts from lower address bit. Therefore, in example 6-6, the
memory “mem” is written as mem[0:127].

Lab
6.3.5 Structure Control of
Memory Design

The construction of memory in different Verilog expressions will
obtain memories of different structures, such as a memory built by
a logical macro unit or a memory built with an embedded RAM
unit. The latter has the best resource utilization rate and the most
concise and high-speed memory hardware structure for FPGA with
large number of RAM units.

The RAMs described by Examples 6-6 and 6-7 have the same
interface and function. Now let’s compare their structure. The
corresponding RTL diagram to Example 6-6 is shown in Figure 6-
20; the corresponding RTL diagram to Example 6-7 is shown in
Figure 6-21.

Lab

Figure: The RTL circuit module diagram of Example 6-6

Figure: The RTL circuit module diagram of Example 6-7

Lab

zWhy the differences between the example 7-6 and 7-8 are
so big？The reasons are given as follows：

z（1）The expression way of Verilog. The output Q of the
memory in Example 7-6 adopts “assign” statements. There
is no any register or memory components in this case.
Therefore, this structure can not use the ready-made RAM
in the FPGA.

z Example 7-8 uses two “always” process and the output Q
has an added register. This expression satisfies the RAM
structure in the FPGA.

Lab

（2）invoke the constraint configuration of the embedded RAM units. The correct
and proper Verilog descriptions is the basis of invoking the RAM units of the FPGA,
which however can not guarantee that the design will invoke the RAM units. This is
because the synthesizer still does not know the design purpose of the users. For
constructing the circuit with the use of RAM after synthesis, the constraint
configurations are needed for the synthesizer of EDA tools.

Settings->Analysis & Synthesis
Settings->More Settings-
>Auto RAM Replacement->On

Lab
6.4 Usage Examples of
LPM_ROM

6.4.1 Design of Simple Sinusoidal Signal Generator

Figure: Adding the initialization configuration file
and allowing in-system access to ROM content.

MegaWizard Plug-In Manager
-> Memory Compiler ->
ROM:1-PORT

Lab

 Counter or address signal generator. Here according to the parameters of ROM above, we select 7-
bit output.

 Sinusoidal signal data memory ROM (7-bit address line, 8-bit data line), containing 128 8-bit
waveform data (a sinusoidal period), that is, LPM_ROM: ROM78.

 Design of top-level schematic diagram.
 8-bit D/A (set the experimental device to be DAC0832 for this example).

Figure: The block diagram of sinusoidal signal generator

Lab

Lab

Figure: The circuit schematic diagram of sinusoidal signal generator

Figure: The circuit simulation waveform

Lab
6.4.2 Hardware Implementation and
Testing of Sinusoidal Signal Generator

Figure: SignalTap II real-time test interface of sinusoidal signal generator data output

Figure: The waveform display diagram of SignalTap II for sine signal generator

Lab
6.5 Application of In-System
Memory Content Editor

（1）Open the editing window of in-system memory content editor
The in-system memory content editor of Quartus II reads or writes the data of
the operating memory of FPGA via JTAG port, and the read or write process does
not affect the operation of the FPGA.
Tool->In-System Memory Content Editor.

Figure: In-System Memory Content Editor editing window, reading
waveform data from the ROM of FPGA

Lab

Figure: In-System Memory Content Editor editing window, reading waveform data
from the ROM of FPGA

（2）Read the data of the ROM

Lab

Figure: Here, the edited data is loaded into the ROM in the FPGA

（3）Write data
After modification,
choose Write Data
t o I n - S y s t e m
Memory command
in the process ing
m e n u . T h e n t h e
edited data can be
down load t o t he
LPM_ROM through
JTAG port.

Figure: The data waveform measured by SignalTap II

Lab

The data read from the system can be saved as MIF and HEX format file in
the computer or “in-system” downloaded to the FPGA, through the command
of Export Data to File or Import Data from File in the menu.

（4）The input and output data file

Lab
6.6 Invoke of Embedded
PLL of LPM

 The Cyclone/II/III/IV and Stratix/II/III/IV FPGA contain high
performance PLL, which can be synchronized with the input clock signal.
The input clock signal is also severed as the reference. The PLL can
thus output one or several synchronized frequency scaling or frequency
division on-chip clock.

Lab
6.6.1 Building Embedded
PLL Component

Figure: Choosing phase-locked loop ALTPLL

Lab

MegaWizard Plug-In Manager->Create a new custom->I/O->ALTPLL

Figure: Selecting the input reference clock inclk0 to be 20MHz

Lab

Figure: Selecting the control signal of the PLL

PLL enable: pllena
asynchronous reset: areset lock output: locked

Lab

Figure: Selecting the output frequency of c0 to be 0.002MHz

Set up the frequency, phase and duty circle of the output clock

Lab

Figure: Outputing second clock signal c1

Lab

Figure: A sinusoidal signal generator circuit using embedded
phase-locked loop as the clock

Lab
6.7 The Usage of In-System
Sources and Probes Editor

SignalTap II and In-System Memory Content Editor can bring great convenience
for logic system design, test and debug. However, they also have some
disadvantages. For example, SignalTap II (1) occupies a large number of memory
units as the data buffer; (2) unidirectionally gather and display the information of
hardware system in the operation and can not interact with the system
bidirectionally. In-System Memory Content Editor can interact with the system
bidirectionally, the target of which is however only confined to memory.

In-System Sources and Probes Editor can overcome the above-mentioned
drawback. In particular, the test signal for the system hardware does not have to
connect to the I/O port (i.e. all the test signal internally connects to the test
system) . All these tasks are realized by the communication through JTAG port of
FPGA.

Lab

MegaWizard Plug-In Manager->Create a new custom megafunction variation-
>JTAG-accessible->In System Sources and Probes

The testing port “probe” of the “JTAG1” module is set up to be 16 bits and the
signal source is 3 bits.

Figure: Setting the parameters for In-System Sources and Probes module

Lab

Figure: Adding In-System Sources and Probes testing module in the circuit

Lab

Figure: The testing condition of In-System Sources and Probes Editor

Tool->In-System Sources and Probes Editor
Maximum Size of Event Log refers to the number of sampling period, which is
usually 8~32, (most of time is 32)。
S2、S1、S0 are the signals controlling the output of the source, which
corresponds to RST、EN、CLK respectively.

Lab
6.8 Principle and Application
of DDS

Direct Digital Synthesizer (DDS) is a frequency synthesis technology, which
has high frequency resolution, can achieve fast frequency switching, and can
keep the continuous phase in the change. It is easy to realize the numerical
control modulation of frequency, phase and amplitude. Therefore, the application
of direct digital frequency synthesizer is particularly extensive in the design of
frequency source of modern electronic systems and equipment, especially in the
field of communication. This section introduces the working principle of DDS
and its hardware implementation.

Lab
6.8.1 Principle of DDS

Figure: Basic DDS structure

Lab

DDS has the following four features.
(1) Theoretically, the frequency resolution of DDS can get the

corresponding resolution accuracy when the bit number N of phase
accumulator is large enough, which is difficult to achieve by traditional
methods.

(2) DDS is an open loop system of fully digital structure without
feedback link, so its speed is extremely fast, usually in the nanosecond
order.

(3) The phase error of DDS mainly depends on the phase characteristics
of the clock, and the phase error is small.

(4) The phase of DDS continuously changes, and the signal formed has
good frequency spectrum, which cannot be realized by the traditional
direct frequency synthesis method.

Lab
6.8.2 Example of DDS Signal
Generator

Figure: The top-level schematic diagram of DDS signal generator circuit

Lab

Figure: The simulation waveform of Figure 6-41

