
EDA Technology

Design Technology of
State Machine

Lab
General Form of Verilog State
Machine

parameter[2:0] s0=0, s1=1, s2=2,
s3=3, s4=4 ;
reg[2:0] current_state, next_state;

Lab
Moore-type State Machine

Lab
Moore-type State Machine

Lab
Moore-type State Machine

Lab
Moore-type State Machine

Lab
Moore-type State Machine

Lab
Moore-type State Machine

Lab

Lab

Lab

Lab

Lab

Lab
State Machine with Different
Coding Types

The output of this
c o u n t e r i s t h e
output of the state
coding.
output=state

Figure: The general model of addition counter

Lab

S0~S4：00000、11000、00001、00100、00110.

Lab[Example]

Lab

Figure: The working timing diagram of the state machine in Example 8-8

Lab
State Machine with Different
Coding Types

Lab

Lab

zDifference between `define and parameter:
z`define: it aims at the overall design and

can be located outside the module;
zparameter: it has the local feature and is

located in the module. (Of course, `define
can also be located in the module)

Lab

One advantage of macro definition is that the code of each state
can be seen in the simulation waveform.

Lab

Command statement of macro definition

`s

`define macro name macro content

Lab
State Machine with Different
Coding Types

Table: The coding methods of state machine

Sequential coding: it uses the least flip-flops and has the least remaining
illegal states. But sometimes, adjacent state or nonadjacent state refers to
the simultaneous state transformations of multiple flip-flops, and thus
consumes more transformation time. Also, it will cause burr.

Lab
State Machine with Different
Coding Types

One-hot coding: use n flip-flops to realize the state machine
with n state. When the state machine is at one state, the
corresponding flip-flops is 1 and others are 0.
Simple decoding, high transformation speed and good
operation stability are the advantages of the one-hot coding.

Lab
State Machine with Different
Coding Types

1. User-defined way

2. Set up using property definition statement

Just write the code of state in the program and does
not need the use of EDA software tool. For example,
8-10.

There are several ways to set up the coding of states.

[Example 8-10]

LabState Machine with Different
Coding Types
 Set up using property definition statement

Table: Attribute definitions of coding ways and references of resource consumption

Lab

 Direct setting up

Assignments->
Settings-
>Category->
Analysis &
Synthesis Setting
->More Settings-
>Option->Name-
>State Machine
Processing

LabDesign of Safe State Machine

There is no remaining state in
Table 8-4. But in most of time,
there exist remaining states,
such as example 8-1. These
states do not be needed in the
norma l opera t i on , and a re
commonly called illegal states.
If the system enters into these
illegal states, it is required to go
back into the normal states.

In example of 8-1, the program defines 5 legal states (effective states), s0,s1,s2,s3,s4. If
the sequential code is used to denote the state, at least 3 flip-flops are needed. Then it
generates at most 8 possible states. The coding way is shown in Table 8-4. Therefore,
the last 3 states “s5,s6,s7” are illegal states.

Table: The remaining states

Lab

 State guiding method

The advantage of this method is direct and reliable. The
disadvantage is that if the number of illegal states are large, it
consumes a lot of logic resources. Therefore, it is only suitable to
the state machine with sequential coding.

An example :

Lab

 Monitoring Method of State Coding

 Auto-generation of Safe State Machine with the Use of
EDA Tool

For one-hot code, the remaining states are so many that the state guiding method
becomes complicated.
Therefore, logic detection module can be designed: check whether the number of “1”
in the state code is bigger than 1. If sum of bits of the state code is bigger than 1, it
must be the illegal state.

In addition, the property statements can also be used, like （
syn_encoding=“safe, one-hot”）.

